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Definition

I Let (G ,+) be any abelian Polish group. Let c ∈ G . We write
nc = c + · · ·+ c if there are n terms in the sum. We say that
c ∈ G is a midpoint of a, b ∈ G if a 6= b and 2c = a + b.

I We say that a subset A of an abelian froup G is midpoint free
if no point of A is a midpoint of two other points of A.

I A subset A of a vector space V is called rationally convex if
q1v1 + . . . qnvn ∈ A for any finite sequence v1, . . . , vn of
pairwise different elements from A and any sequence of
positive rational numbers q1, . . . , qn, such that
q1 + . . .+ qn = 1.



Forbidden zones

I Z1(A) = {v ∈ G : (∃a, b ∈ A) a + b = 2v}
I Z2(A) = {v ∈ G : (∃a, b ∈ A) v = 2b − a}

If A is a maximal midpoint free set than its complement is the
union of the first and the second forbidden zones for A.

Let us observe that every maximal midpoint free set is not linearly
independent over field Q of all rational numbers. Moreover, every
maximal midpoint free set contains a Hamel basis.
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Theorem (Erdös, Kakutani)

CH is equivalent to the existence of a partition of the real line into
a countable family of independent sets with respect to the
rationals Q.

Remark
From this it follows immediately that under CH the real line can
be decomposed onto countably many midpoint free sets.

Theorem
Real line can be decomposed into countably many rationally
convex free sets.

Proof
Let {xξ : ξ < 2ω} be a Hamel base of R. For every sequence
(q1, q2, . . . , qn) of rational numbers which are not equal to zero set

A(q1, q2, . . . qn) = {q1xξ1 + q2xξ2 + · · ·+ qnxξn : ξ1 < ξ2 < . . . ξn}.
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Lemma
Rational numbers can be decomposed onto countable many
maximal midpoint free sets.

Lemma
Let X ≤ R be a proper countable linear subspace of R over
rationals and Z = spanQ{X ∪ {h}} for a some h ∈ R \ X . Assume
that X =

⋃
n∈ω Qn be a partition of X onto maximal midpoint free

sets. Then there exists a docomposition of Z =
⋃

n∈ω Rn onto
maximal midpoint free set such that for any n ∈ ω we have
Qn ⊆ Rn.

Theorem
CH implies the countable decomposition of the real line onto
maximal midpoint free sets.
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Theorem
Real line can be partitioned into continuum many maximal
midpoint free sets.

Proof
Let Q =

⋃
n∈ω Qn be decomposition from Lemma. Assume that

0 ∈ Q0. Let {vα : α ∈ 2ω} be Hamel basis of R. Let f : 2ω → ω
be such that supp(f ) = {α : f (α) 6= 0} be finite. Set

Rf =

{∑
α∈2ω

qαvα : ∀α qα ∈ Qf (α) and qα = 0

for all but finetely many α’s}
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Theorem
Every midpoint free set in a Euclidean space which has the Baire
property is meager and every measurable midpoint free set has
Lebesgue zero.

Theorem
Every abelian Polish group such that the set {x ∈ G : x + x = a}
is countable for every a ∈ G contains a midpoint free set which is
also a Bernstein set.
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Theorem

I Under CH there is a midpoint free set which is a Lusin set;

I It is relatively consistent with ZFC that ¬CH and there is a
midpoint free set which is also a Lusin set.

Of course, the same is true when we replace Lusin set by Sierpiński
set.



Definition
A ⊆ Zω is

I bounded if there is f ∈ Zω such that
∀a ∈ A ∀∞n |a(n)| ≤ |f (n)|;

I unbounded if A is not bounded;

I dominating if ∀f ∈ Zω ∃a ∈ A ∀∞n |f (n)| ≤ |a(n)|.



Theorem

1. If A ⊆ Zω is maximal midpoint free then A is unbounded.

2. There exists a maximal midpoint free A ⊆ Zω which is
dominating.

3. There exists a maximal midpoint free A ⊆ Zω which is not
dominating.



Example

The hyperbola H = {(x , y) ∈ R2 : xy = 1} is a maximal closed
midpoint free subset of the plane R2.

Example

T = S1 × S1, where addition is defined by the following formula:

(a, b) + (c, d) = (a + c mod 1, b + d mod 1).

A circle C = {(x , y) ∈ T : (x − 1
2)2 + (y − 1

2)2 = 1
18} is a closed

maximal midpoint free subset of T.
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Theorem
The set F = {a = .a1a2 . . . : ai = 0 or ai = 1, i ∈ N} of those
points in S1 whose quaternary expansions have only digits 0 and 1
is a closed maximal midpoint free subset of S1.

Theorem
If E is a closed maximal midpoint free subset of S1, then the first
forbidden zone for E , Z1(E ) = {x : 2x = a + b : b, a ∈ E , a 6= b},
is a proper subset of E c .
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Theorem
There exists a maximal midpoint free subset F of the group (Z,+)
with the first forbidden zone Z1(F ) equal to the whole F c .

Theorem
Let C1 be the set of those points from the interval [0, 1] whoce
quartenary expansion contains only numbers: 0, 1, and let C2 be
the set of those points from the interval [0, 1] whose decimal
expansion contains only numbers: 0, 2. These sets are midpoint
free and C1 + C2 is equal to the interval [0, 1].
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Theorem
There exists a maximal closed midpoint free subset F of the group
(R,+) with the first forbidden zone Z1(F ) equal to the whole F c .



Thank you for your attention!


